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its percentage was calculated with respect to the pollen + Isoetes 
sum. Arboreal pollen (AP)/arid (Artemisia + Amaranthaceae) 
ratios were calculated for both the S11 and S7 pollen records 
(shown in Figure 6). We use this relationship to document forest 
versus steppe fluctuations during the Holocene (i.e. Jiménez-
Moreno et al., 2011). The ratio was calculated following the equa-
tion: AP/arid ratio = (AP − arid)/(AP + arid). Average AP/arid ratio 
values between the resampled AP/arid ratios by linear interpola-
tion from S11 and S7 cores were calculated using Analyseries 2.0 
(Paillard et al., 1996).

Results
Chronology and sedimentary rates
Eleven calibrated radiocarbon ages were used to determine the 
sediment chronologies from S7 and S11 (Table 1; Figure 3). Age 
models from both records seem to show very similar sedimentary 
rates (Figure 3). The age–depth model for the S7 and S11 cores 
suggests that sedimentation was more or less continuous in the 
marsh area for at least the last ca. 5000–4000 cal. yr BP (Figures 2 
and 3). Radiometric dates from the S11 core show two seem-
ingly old ages of 3104 and 3780 cal. yr BP at 350 and 750 cm, 

respectively. We attribute this to mobilization and re-sedimenta-
tion of old organic material into the marsh area probably due to 
the EWEs. Those radiocarbon ages were not used in the age-
model construction. Sediment accumulation rates (SAR) were 
calculated between the radiocarbon dates. Relatively low SARs 
characterize the earliest part of the S11 record, with values around 
1.21 mm/yr. SARs increased substantially later on, between 4000 
and 3000 cal. yr BP, with values between ca. 4.89 and 7.69 mm/yr. 
Both records show relatively low SAR in the last ca. 3000 cal. yr 
BP, between 0.79 and 1.33 mm/yr (Figure 3).

Lithology
The lower part of core S11, from −18 to −13.5 m, is a typical 
marsh sequence of mostly clayey silts (70–75% silts, 20–25% 
clay, and 2–5% sand) of a grayish ocher (10YR8/2) color, with 
burrowing, roots, carbonate nodules, oxidation, and intense lami-
nation. The lower portion of core S7, from −12 to −8.5 m, consists 
of a sequence of fine to medium sands (75–90% sand, 5–20% 
silts, and 1–4% clay), well sorted (≈65–70% around 0.125–
0.5 mm), white-orangish (10YR7/8) in color, and containing 
abundant red stains, roots, and bioturbation.

Figure 2. Lithologic logs and location of radiocarbon dates from cores S7 and S11.
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The dominant lithology in the two cores is gray-greenish 
(10YR6/1) clayey silts: 50–60% silts, 15–35% clay, and 10–1% 
sand, with more ocher tones (10YR6/4) in the upper 2 m. The 

lower part of S11 presents the largest amounts of sand content 
(20–30% sand) from −13.5 to −7.5 m, turning progressively into 
clayey silts toward the top (<1% sand). The mollusk and gastro-
pod macrofauna appear to be dominated by shallow water estua-
rine fauna from sheltered environments (Tellina tenuis, 
Cerastoderma edule, Saccostrea virletii, Nassarius sp.). Different 
decimetric layers with higher sand content and abundant marine 
mollusks and gastropods appeared in the different cores in rela-
tion to marine inputs. The macrofauna is composed of a mixture 
of disarticulated valves, shell fragments, and whole bivalves, with 
a high diversity of marine (Glycymeris sp., Chlamys sp., Cardidae 
sp., Anomia ephippium, and Bittium reticulatum) and estuarine 
species (Cerastoderma edule and Saccostrea virletii).

Pollen, dinocysts, and algae
Sixty different pollen, two algal species (Botryococcus and 
Pediastrum), microspores of Isoetes, and different species of 
dinocysts have been identified in the S7 and S11 cores. Some of 
the identified pollen taxa and algae occur in percentages lower 
than 1% and have not been plotted in Figures 4 and 5. Both pollen 
records show low percentages of arboreal forest taxa (%AP), with 
mean values around 15–20%, mostly made up of Pinus, Quercus 
(both evergreen and deciduous), Olea, and Juniperus. Herbs and 
grasses such as Amaranthaceae, Poaceae, and Asteraceae (includ-
ing Artemisia, Asteraceae Cichorioideae, and other Asteraceae) 
dominate the pollen spectra. Ericaceae shrubs are present with 
varying abundances around 5%. Hydro-hydrophytic taxa also 
occur and are mostly represented by Cyperaceae, Myriophyllum, 
and Isoetes. Dinocysts are dominated by Lingulodinium machae-
rophorum but Spiniferites sp. and Hystrichokolpoma rigaudiae 
are also present.

S11 and S7 pollen records show quite similar results with 
respect to long-term pollen variations. The earliest part of both 
records is characterized by maxima in %AP as well as in Isoetes 
and dinocysts. The S11 core is older and shows %AP around 
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30% between 5000 and 4300 cal. yr BP. A decreasing trend is 
observed since then until the last centuries in both records: from 
ca. 30% to ca. 20% in the S11 and from ca. 20% to ca. 5% in the 
S7. This trend is mostly triggered by decreasing Quercus and 
Pinus (in the S7 record) and an increase in Amaranthaceae (from 
5% to 25% in the S11 and from 10% to 65% in the S7) and in 
Artemisia. Isoetes and dinocysts also decreased throughout the 
late Holocene in both records.

Shorter-term scale changes are also observed in both records. 
These variations are clearly recorded in the AP/arid ratio (Figure 6). 
Minima in AP/arid ratios in an average plot of the %AP of the two 
records are reached at ca. 4000, 3000–2500, and 1000 cal. yr BP.

Discussion
Middle and late Holocene aridity trend and 
geodynamics
Maxima in warm and humid conditions characterized the early–
middle Holocene (following the subdivision by Walker et al., 
2012) from ca. 10,500–7000 cal. yr BP in the western Mediterra-
nean area (Anderson et al., 2011; Jalut et al., 2009; Jiménez-
Moreno and Anderson, 2012). Pollen records from southwestern 
Iberia also indicate optimum climate conditions, with a maximum 
development of Quercus forest and thermomediterranean ever-
green taxa between ca. 10,000 and 6500 cal. yr BP (Fletcher et al., 
2007; Reed et al., 2001; Santos et al., 2003). Highest sea level is 
also observed in coastal sedimentary sequences in this area (i.e. 
the Flandrian maximum; Zazo et al., 1994).

The Holocene climatic optimum can be explained by orbital-
scale summer insolation maxima (Laskar et al., 2004). This con-
tributed to climate warming, generating an increase in the 
land–sea contrast that would trigger enhanced wind system and 
higher precipitations during fall–winter season (Meijer and 
Tuenter, 2007; Tuenter et al., 2003). Also, a reorganization of the 

general atmospheric circulation with a southward shift of the 
westerlies has been interpreted, inducing wetter conditions in this 
area (Magny et al., 2012).

Pollen data from S11 and S7 records show a decreasing trend 
in arboreal taxa (%AP) as early as the beginning of the records, 
ca. 5000 cal. yr BP (S11), and until the last centuries. Arid taxa 
such as Amaranthaceae and Artemisia increased considerably 
during this period (Figures 4–6). A progressive decrease in 
Isoetes, a shallow water aquatic plant, is also observed in both 
S11 and S7 records (Figures 4 and 5). All of this can probably be 
interpreted as an increase in aridity in the area, which would 
induce a forest reduction around the marsh and would trigger 
lower freshwater levels (Carrión et al., 2010) or more frequent 
instability or eutrophication in the marsh at that time. Aridifica-
tion does seem to play the main role in transforming the vegeta-
tion in this region during the middle and late Holocene, as 
observed at many other pollen records from southern Spain and 
the Alboran Sea (Anderson et al., 2011; Carrión, 2002; Carrión 
et al., 2007, 2010; Combourieu-Nebout et al., 2009; Fletcher 
et al., 2007, 2013; Jiménez-Moreno and Anderson, 2012; Pérez-
Obiol et al., 2011; see some of these records in Figure 6). All these 
pollen records show a more or less steep progressive reduction in 
forest species and the increase in herbaceous xerophytes (Arte-
misia, Amaranthaceae, and other herbs) at that time agreeing with 
our study.

Other climate proxy records from the area support the idea of 
a general trend to climatic aridification over the second half of the 
Holocene. For example, the lake-level investigations from Laguna 
de Medina and Laguna de Río Seco, which show more ephemeral 
and shallower lake levels since then (Jiménez-Espejo et al., 2014; 
Reed et al., 2001). A landscape evolution study in the Huelva 
coast shows that the onset of the accumulation of large mobile and 
semi-mobile dune systems, related to aridity in the area, began at 
ca. 5000 cal. yr BP (Zazo et al., 2005). A recent study from an 
alpine lake in the Sierra Nevada, in southern Spain, records a 
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Figure 5. Pollen diagram of the S7 record showing percentages of selected taxa (higher than 1%). Isoetes and dinocyst percentages were 
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progressive increase in Saharan eolian dust deposition starting at 
ca. 7000–6000 cal. yr BP (Jiménez-Espejo et al., 2014). A marine 
record off northwestern Africa also shows a significant increase in 
eolian dust at around 5500 cal. yr BP, which was interpreted as the 
abrupt end of the African Humid Period (DeMenocal et al., 2000). 
Bellin et al. (2013) also reported enhanced geomorphic instability 
(i.e. high erosion and soil degradation) since 5600 cal. yr BP in SE 
Spain. Climate cooling after the early Holocene thermal maxi-
mum is also observed in sea-surface temperatures deduced from 
sediment marine cores from the area (Cacho et al., 2002).

The observed aridification trend during the middle and late 
Holocene seems to be related to the decreasing trend in summer 
insolation (Figure 6). Reduced summer insolation could have pro-
duced lower sea-surface temperatures (Marchal et al., 2002), gen-
erating a decrease in the land–sea contrast that would be reflected 
in a reduction of the wind system and lower precipitations during 
the fall–winter season. Also, a reorganization of the general atmo-
spheric circulation with a northward shift of the westerlies – a 
long-term enhanced NAO+ trend – has been interpreted, inducing 
drier conditions in this area (Magny et al., 2012). Declining sum-
mer insolation at these latitudes would have negatively affected 
the growing season due to cooling, producing further forest 
decline (Fletcher et al., 2007).

Geodynamic processes also occurred in this coastal area, 
which triggered changes in the sedimentary and fossil record 
(Figures 2 and 6). Before ca. 4000 cal. yr BP, the estuary was 
mostly closed, and the landscape was characterized by a stabi-
lized dune system around S7, while a brackish lagoon occurred 
around S11. The estuary opened to the ocean and fully became a 
brackish lagoon at ca. 4000 cal. yr BP due to enhanced subsid-
ence. Subsidence was important between 4000 and 2000 cal. yr 
BP, and a significant area west of S7 and S11, the southernmost 
sector of the Abalario dunes, was flooded (Rodríguez-Ramírez 
et al., 2014; Figure 1). Marine inputs (i.e. during EWEs) bringing 
sand to the overall lutite sedimentation and enhanced sedimentary 
rates (between 4.9 and 7.7 mm/yr) occurred then. The gradual 
confinement of the Guadalquivir estuary since 3000–2800 cal. yr 
BP, produced by progradation of the littoral systems and infilling 
of the marshland, could have generated a progressively less influ-
ence of marine waters in the studied marsh (Rodríguez-Ramírez 
and Yáñez, 2008; Rodríguez-Ramírez et al., in press), inducing a 
decrease in the dinoflagellate cyst, transported marine benthic 
and planktonic foraminifera, and marine macrofauna, recorded 
in both S11 and S7 cores (Figures 4 and 5). Furthermore, benthic 
foraminifera from sheltered environments (e.g. Haynesina ger-
manica assemblage; Murray, 2006; Pérez-Asensio and Aguirre, 
2010; Ruiz et al., 2005) are more abundant in younger sediments 
in both cores (Rodríguez-Ramírez et al., in press). Since then, 
sedimentation in the estuary was more stable, with lower sedi-
mentary rates (between 0.7 and 1.3 mm/yr) and characterized by 
more or less homogeneous lutites. Vegetation in the area could 
have been affected by these changes in the estuarine environment. 
These processes would have only affected immediate vegetation 
around the marsh or lagoon area, being this mostly characterized 
by herbs, halophytes (i.e. Amaranthaceae), and aquatic plants. 
However, the progressive linear trend observed in the pollen 
record since 5000 cal. yr BP does not seem to match with geody-
namic changes, such as the closing–opening–closing of the estu-
ary, which would produce a very clear cyclical-like pollen signal. 
It looks like our pollen records bear a strong component of 
regional pollen input coming in the area by wind or fluvial 
transport.

Millennial-scale variability
The S11 and S7 pollen records show that superimposed on the 
long-term aridification trend were multi-centennial scale 

periods characterized by decreases in the AP/arid ratios at ca. 
4000, 3000–2500, and 1000 cal. yr BP (Figure 6). These 
decreases could be interpreted by either regional forest reduc-
tions caused by enhanced droughts and/or increases in herbs–
halophytes that could be due to more local geodynamic 
processes. Comparing the S11 and S7 records with other pollen 
records from southern Spain showing millennial-scale variabil-
ity (Laguna de Río Seco, Borreguiles de la Virgen, and Laguna 
de la Mula terrestrial records from the Sierra Nevada (Anderson 
et al., 2011; Jiménez-Moreno and Anderson, 2012; Jiménez-
Moreno et al., 2013)) shows that some of the ‘arid’ steps identi-
fied in our records coincide in time and duration – within the 
error of the radiocarbon dating – with three regional arid events, 
centered at ca. 4200, 3000, and 1200 cal. yr BP, well known in 
the western Mediterranean and other areas (Figure 6). However, 
geodynamics are important in the area with enhanced subsid-
ence at this time, and processes such as EWEs could have also 
controlled environment and vegetation change in the immediate 
area (Figure 6).

The ca. 4000 cal. yr BP step is shown in the S11 core by a 
reduction in AP/arid ratios and specifically in Pinus and decidu-
ous Quercus, Isoetes, and dinocysts. This apparent forest reduc-
tion could have been due to regional climatic and/or more local 
environmental changes (or both). Climatically, a ca. 4200 cal. yr 
BP arid event is also observed in another regional paleoclimate 
proxy records, such in the lake records from Zoñar Lake and 
Siles Lake (Carrión, 2002; Martín-Puertas et al., 2008). Strong 
dryness is also observed more globally, for example, in Central 
Europe (Magny, 2004), Italy (Drysdale et al., 2006), the Red Sea 
(Arz et al., 2006), or North America (Booth et al., 2005), and 
some researchers relate this arid period with the collapse of the 
old Akkadian culture in Mesopotamia (Weiss et al., 1993), as 
well as the collapse of Neolithic Chinese cultures (An et al., 
2005; Liu and Feng, 2012). This arid event coincides roughly 
with Bond’s cold event 3 (Bond et al., 2001; Figure 6), event 3 
of Wanner et al. (2011), and one of the six periods of significant 
rapid climate change of Mayewski et al. (2004). This ca. 4200 
cal. yr BP climatic event marks the beginning of the Neoglacial 
(Wanner et al., 2011). Therefore, Walker et al. (2012) proposed 
it as a suitable marker to subdivide the Holocene period into 
‘middle’ and ‘late’ chronozones. However, a marine input is also 
recorded at this time in the S11 and S7 by a sandy layer and has 
been interpreted as an EWE in a subsidence and marine trans-
gressive context (see section above; Rodríguez-Ramírez et al., 
in press). This could have brought more salt in the marsh area 
and change the local vegetation toward more halophytic condi-
tions (i.e. more Amaranthaceae), also triggering the decrease in 
AP/arid taxa.

The ca. 3000–2500 cal. yr BP step is also noticeable in the S11 
record by two minima in AP/arid ratios, Isoetes and dinocysts 
around that age. This step is also obvious in the S7 core, but this 
record also shows reducing values in the AP/arid ratios together 
with a minimum in the dinocyst occurrence around 3000 cal. yr BP. 
This pollen oscillation could be interpreted climatically as enhanced 
aridification in the area. This would be supported by the ca. 3000 
cal. yr BP arid event that has been locally recognized by a desicca-
tion in the Laguna de Medina (Reed et al., 2001) and by accumula-
tion of an eolian unit (U5) at ca. 2700 cal. yr BP in the nearby coastal 
area of El Abalario and Doñana (Zazo et al., 2005). It has also been 
regionally described by lower lake levels in Zoñar Lake and Siles 
Lake (Carrión, 2002; Martín-Puertas et al., 2008), also in a study by 
Bellin et al. (2013) who show enhanced geomorphic instability in 
the area (aridification event A2). Globally, this step coincides in 
time with Bond’s cold event 2 from the North Atlantic (Bond et al., 
2001), mayor global climatic reorganizations (Mayewski et al., 
2004), and low lake levels in central Europe (Magny, 2004; Figure 6). 
Another EWE occurred in this estuarine area at this time (ca. 3000 
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cal. yr BP; Figure 6). This again could have caused the increase in 
herbs–halophytes triggering the decrease in AP/arid ratios (Figure 6) 
observed in the record.

Minima in AP/arid ratios pointing to another arid step also 
occurred at ca. 1000 cal. yr BP in the S11 record, agreeing with 
other pollen records regionally (Jiménez-Moreno et al., 2013). It 
looks like the last eolian accumulation phase in the nearby El 
Abalario and Doñana dunes occurred around this arid time (Fig-
ure 6). The ca. 1000 cal. yr BP arid step falls around the Dark 
Ages from ca. 1450 to ca. 1050 cal. yr BP and the Medieval 
Climate Anomaly (MCA; from ca. 1050 to ca. 700 cal. yr BP; 
Moreno et al., 2012) and occurred after the Roman Humid 
Period, also well documented in the area (Jiménez-Moreno 
et al., 2013; Martín-Puertas et al., 2010). Aridity around that 
time is observed in other pollen records from the region: in the 
Alboran Sea (MD95-2043 and ODP 976 cores; Combourieu-
Nebout et al., 2009; Fletcher et al., 2013) and in the Guadiana 
Valley, Portugal (Fletcher et al., 2007). The Laguna de Medina 
record, Cádiz, documents desiccation events at that time (Reed 
et al., 2001), and the Mg/Al and Rb/Al ratios from the Alboran 
Sea and Lake Zoñar show a significant decline in precipitation 
(Martín-Puertas et al., 2010). Lake levels are also low at this 
time in southwestern and central Europe (Magny 2004; Martín-
Puertas et al., 2010). This arid step coincides with cold sea-sur-
face temperatures (event AC1) from the Alboran Sea (Cacho 
et al., 2002), Bond cold event 1 in the North Atlantic (Bond 
et al., 2001), and a period of significant rapid climate change of 
Mayewski et al. (2004).

This study shows millennial-scale variability in the late Holo-
cene vegetation from the Guadalquivir estuary area that could 
have been caused by climate change. The comparison of these 
pollen records with another proxy records from the western Medi-
terranean area shows millennial-scale climatic periods that seem 
to be recognized regionally and globally, for example, in the 
North Atlantic. This would support the hypothesis of a highly effi-
cient climatic coupling between the North Atlantic and the west-
ern Mediterranean region during the late Holocene. The NAO is 
one of the major climate modes that naturally affect weather and 
climate patterns across Europe, controlling winter precipitation in 
the area (Hurrell, 1995). Positive NAO years are associated with 
Iberian dryness and cold temperatures in Greenland (Frigola 
et al., 2007; Hurrell, 1995). Therefore, the arid steps recognized in 
the paleoclimate records from the western Mediterranean area 
could be related with periods of persistent positive NAO index, 
triggering a northward migration of the westerlies and less winter 
precipitation in the region (Frigola et al., 2007; Muñoz-Díaz and 
Rodrigo, 2003).

In the Guadalquivir estuary, such global climatic changes may 
have compounded the effects of local geodynamic processes such 
as a marine transgression and EWEs on the pollen record, espe-
cially for the ca. 4000 and 3000 cal. yr BP events (Figure 6). We 
think that in both cases, regional climate (i.e. aridity) and/or local 
coastal processes (i.e. EWEs) would generate a similar effect on 
the pollen record, an increase in herbs and, in particular, in Ama-
ranthaceae, and then could have been combined. In addition, his-
torical records make reference to a large tsunami that hit the 
coasts of SW Iberia in AD 881 (Guidoboni et al., 1994) but does 
not seem to be recorded in our sedimentary records. Very active 
storms over the North Atlantic during persistent NAO+ periods 
could have generated abundant cyclones in the area (Nissen et al., 
2010), perhaps explaining the occurrence of EWEs at those times. 
However, this does not exclude the possibility of tsunamigenic 
origin of some of these EWEs, as suggested by Rodríguez-
Ramírez et al. (in press). This study then shows that estuarine 
environments in tectonically active areas are, therefore, particu-
larly complex when trying to learn about climatic patterns and 
their effects on the vegetation.

Conclusion
Pollen and other paleoclimate records from SW Spain and the 
western Mediterranean show a clear aridity trend during the mid-
dle and late Holocene. This is shown in the pollen records through 
a loss of forest cover and the increase in xerophytic herbs. The 
aridity trend seems to be caused by a decrease in insolation that 
occurred at that time, triggering lower sea-surface temperatures 
and a decrease in the land–sea contrast that would generate a 
reduction of the wind system and lower precipitations during the 
fall–winter season. Also, a reorganization of the general atmo-
spheric circulation with a northward shift of the westerlies – a 
long-term enhanced NAO+ trend – has been interpreted, inducing 
drier conditions in this area.

The studied records also show millennial-scale variability, iden-
tifying three main periods characterized by forest reduction and/or 
increase in arid plant species and halophytes. These climatic steps 
were centered at ca. 4000, 3000–2500, and 1000 cal. yr BP, coincid-
ing in timing and duration with well-known arid events in the west-
ern Mediterranean and other areas such as the North Atlantic. This 
suggests that vegetation changes in this area could have been trig-
gered by millennial-scale climate variability, supporting a highly 
efficient climatic coupling between the North Atlantic and the west-
ern Mediterranean and alternation of persistent NAO+ and NAO− 
modes as the main mechanism forcing millennial-scale precipitation 
changes. Another explanation for the Guadalquivir estuary pollen 
variations could be more related with local geodynamic processes 
such as marine transgression over the Abalario dune systems and two 
EWEs, which occurred during two of these steps (ca. 4000 and 3000 
cal. yr BP). We think that both processes, regional climate and local 
geodynamics, would have produced a similar pattern on the pollen 
record and may have combined, which makes this tectonically 
active estuarine environment tricky when trying to understand veg-
etation variations due to climate change.
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