The Holocene and Upper Pleistocene pollen sequence of Carihuela Cave, southern Spain

Séquence pollinique dans la Grotte de la Carihuela à l’Holocène et dans le Pléistocène supérieur (sud-est de l’Espagne)

Santiago Fernández a, Noemí Fuentes a, José S. Carrión a,*, Penélope González-Sampériz b, Encarna Montoya a, Graciela Gil c, Gerardo Vega-Toscano d, José A. Riquelme e

a Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
b Instituto Pirenaico de Ecología-CSIC, Av/Montañana 1005, 50059 Zaragoza, Spain
c Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
d Departamento de Prehistoria, Facultad de Geografía e Historia, Ciudad Universitaria, 28040 Madrid, Spain
e Departamento de Prehistoria y Arqueología, Facultad de Filosofía y Letras Campus Universitario de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain

Received 21 April 2005; accepted 1 January 2006
Available online 16 January 2007

Abstract

A new pollen sequence (ca. 15,700–1250 yr BP) is presented for three stratigraphical sections of Carihuela Cave (Granada, southeastern Spain), thus completing a record that covers from the last Interglacial to late Holocene. The Late Glacial is characterized by open landscapes with junipers and early colonisation of Quercus, while the Holocene is depicted by mixed oak forests, with a diversity of broad-leaf trees and scrub, which decrease after ca. 5470 yr BP synchronously with the expansion of xerophytes and occurrence of indicators of anthropogenic disturbance. The whole pollen record of Carihuela fits into the general trends described for reference pollen sites of southern Europe, including Padul in the province of Granada, and other sequences from Mediterranean Spain, through which the heterogeneity of environmental change increases from mid to late Holocene. We conclude that, in contrast with other regions of Spain, deciduous Quercus-dominated forests are very old in eastern Andalusia, thus conflicting with floristic phytosociological models of vegetation change that imply that monospecific Q. ilex/rotundifolia woodlands are the potential mature forest in the region. Dating results suggest that the last Neanderthals of Carihuela lived between ca. 28,440 and 21,430 yr BP, which agrees with the postulation that southern Spain was the latest refugium for this human species in Europe.

© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

On présente une nouvelle séquence pollinique (ca. 15 700–1250 yr BP) provenant de trois sections stratigraphiques de la Grotte de la Carihuela (Granada, Sud-Est de l’Espagne), qui complète la période comprise entre le dernier Interglaciaire et l’Holocène Récent. Le Tardiglaciaire est caractérisé par un paysage ouvert avec des genêvriers et une colonisation précoce de Quercus, tandis que l’Holocène est représenté par une chaîne mixte avec divers planifoliés et arbustes, qui diminuent après 5470 BP en même temps qu’arrive une expansion de xérophytes et l’apparition d’indicateurs anthropiques. La séquence de La Carihuela est en accord avec les données palynologiques générales des grands sites du Sud de l’Europe, comme celui de Padul dans la province de Granada, ou quelques autres de l’Espagne méditerranéenne, malgré la grande variabilité du changement paléo-environnemental qui va augmenter à partir de l’Holocène moyen et Récent. On peut dire en conclusion qu’au contraire des autres régions de l’Espagne, la forêt caducifoliée Quercus domine à l’Est de l’Andalousie depuis longtemps, malgré les modèles phytosociologiques de l’évolution de la végétation qui présentent des formations monospecifiques de Q. ilex/rotundifolia comme la forêt mûre potentielle à la...
1. Introduction

Palynological investigations in Carihuela Cave started with Carrion’s (1992) work on sediments from five stratigraphical sections containing Middle Palaeolithic artefacts. Pollen spectra showed millennial-scale changes in the representation of Pinus, Poaceae and Artemisia, and depicted a sequence of Pleistocene vegetation landscapes which would have oscillated between an arboreal vegetation with Pinus and mesothermoophilous taxa, and a herbaceous type suggestive of cold stadial conditions.

Carrion’s (1992) work on sediments from five stratigraphical sections containing Middle Palaeolithic artefacts. Pollen spectra showed millennial-scale changes in the representation of Pinus, Poaceae and Artemisia, and depicted a sequence of Pleistocene vegetation landscapes which would have oscillated between an arboreal vegetation with Pinus and mesothermoophilous taxa, and a herbaceous type suggestive of cold stadial conditions.

Carrioñ et al. (1998) added two late Pleistocene pollen diagrams to the former sequence. Overall, that study reinforced the chronostratigraphical framework by Vega-Toscano et al. (1988), although it was necessary to reconsider the oak-dominated Unit VIIa, and move it from interpleni-glacial to interglacial, on the basis of a Th/U date of around 117,000 yr BP. Thus, Carrioñ et al. (1998, 1999) postulated the occurrence of (i) a Quercus and Olea-dominated interglacial (ii) a pre-Würmian phase with alternation of forest and steppe, (iii) two Pleniglacial maxima with steppic vegetation and the disappearance of thermophytes, (iv) an interpleni-glacial episode beginning at ca. 45,200 yr BP, with Pinus forests and continuous occurrence of mesothermoophilous taxa, (v) a poorly defined Late Glacial, with a suggestion of Quercus colonization.

Here we present a new radiocarbon dated, Late Glacial to Holocene pollen record, together with dating for some Pleistocene beds studied in Carrioñ (1992). This new study completes the palaeoenvironmental record, and covers a time span from the Eemian up to the last millenium.

2. Setting and modern vegetation

Carihuela Cave is located 45 km northeast of Granada city in eastern Andalusia, southern Spain. It is situated on the north slope of the Sierra Arana Mountain in the valley of the southwesterly flowing Río Píñar (Fig. 1). The cave opening faces north, is situated on the south side of the valley at approximately 3°25′47″W, 37°26′56″N, and is 1020 m above sea level.

Carihuela is just one of the several caverns located in the area, with the companion Cueva de las Ventanas being renowned because of speleotourism (Riquelme, 2002). These caves honeycomb a hill upon which a Moorish castle stands. It is this castle, which gave rise to the name of the hill, El Castillo (Fig. 1). This hilltop, as well as the caves on its hillside, has a commanding view of the surrounding countryside.

Modern landscape has been altered by anthropogenic activities. Most of the present area around Píñar is utilized for agriculture. Some of the land is under orchards, but the overriding portion is tilled and mainly under wheat, and to a smaller extent under barley. Olives and wine grapes have been cultivated in the area probably since the Early Bronze Age or earlier (Wigand, 1978). Citrus and Prunus orchards are recent introductions.

Local forests are characterized by the evergreen oak Quercus rotundifolia, with the semi-deciduous Q. faginea in areas with the most humid soils. Q. rotundifolia dehesas are also a common feature of local landscapes. Mixed oak and pine forests are better preserved at higher elevations, primarily along the ridge and on the slopes of the Sierra Arana to the south, but a few other isolated forested areas occur to the southwest and north of Píñar and to the west of Iznalloz beyond the Río Cubillas (Carrioñ, 1992). A scrub stage with Quercus coccifera is more common, with Pistacia lentiscus, Philyrea angustifolia, and Olea europaea in thermic situations (Carrioñ, 1990). Relics of Pinus sylvestris and Pinus nigra forests are found in the region above 1600–1800 m. It is worth stressing that floristically-based phytosociological models (e.g. Rivas-Martinez, 1987) contend that potential vegetation on the hills and plains around the Píñar River is a monospecific Q. rotundifolia forest.

3. Cave description

Carihuela Cave has three entrance ways, which join after a short distance to form a single chamber with a corridor continuing deeper into the hillside. The cavern axis is oriented in a generally south-easterly direction from the main entrance (Fig. 2) (Vega-Toscano, 1988). The largest entrance chamber, Chamber III (CIII), is about 13 m long and 4–6 m wide, and is connected on the east by a corridor leading to Chambers I and II.

At the south end of CIII a corridor about 2–3 m in width opens into Chamber IV (CIV). This chamber is about 7 m in length and about the same in width. It is in this chamber and the corridor leading to it that most of the excavations pertinent to this study were carried out (Fig. 2). To the south wall of Chamber IV, a large and easterly downward opening connects to Chamber V (CV). At this point, however, the slope of the cavern floor rises steeply upward towards the far end of CV, which southern part is illuminated by light entering through a chimney. This is the place of entry for the rock-fall talus cone, which occupies much of this chamber.
4. Excavation findings

Archaeological exploration in Carihuela has episodically been conducted since the 1950s (Spahni, 1955), although unfortunately most of the results remain unpublished. Holocene deposits were excavated by Pellicer (1964a, 1964b), who described a series of Neolithic and Bronze Age industries in CIV. Between 1969 and 1971, three excavations were
conducted by H.T. Irwin and R. Fryxell, Washington State University (WSU) and M. Almagro, Complutense University of Madrid (Almagro et al., 1970; Garralda, 1970). WSU archaeological research was undertaken both in the Exterior Area (AE) as in CIII and CIV (Fig. 2).

From 1979 to 1992, a multidisciplinary project was coordinated by G. Vega-Toscano, Madrid. Vega-Toscano et al. (1988) described 12 lithostratigraphical units in the whole cave infill, comprising Units XII–III of Pleistocene age, and Units II–I of Holocene age (Fig. 2). Units XII and XI are peaty clay containing stalagmitic crusts and calcium carbonate pseudomycelia, with scanty faunal remains, mainly turtle. Units X–VIIb comprise blocks and angular clasts in clayey silt, eventually sandy clays. Faunal remains are characterized by Equus caballus cf. germanicus, Cervus elaphus, Bos primigenius, Dicerorhinus kirchbergensis, Microtus nivalis and Allocricetus bursae (Ruiz-Bustos and García-Sánchez, 1977). Unit VI is again characteristically organic, with silty clays, charcoal, and calcareous concretions, with predominance of lagomorphs and carnivores (Canis, Ursus, Panthera, Vulpes, and Crocuta). Units V–III comprise angular clasts, with calcium carbonate precipitation being common across IV and III. Microtus arvalis becomes more common, while lagomorphs and carnivores remain important among the faunal remains. Units II and I are clays with abundant hearths, and Unit II containing gravels. Paleontological findings include bone remains of Lagomorpha (Lepus, Oryctolagus),

Fig. 2. Longitudinal section of Carihuela Cave showing the situation of the main chambers, profiles and lithostratigraphical units studied for pollen by Carrión (1992), Carrión et al. (1998) and this paper. Most sediments from CI, CIII, and CIV come from the exterior via the north-facing entrances. Infills from CV and most of CIV entered through the chimney situated in the south extreme.

Fig. 2. Section longitudinale de la grotte de La Carihuela selon la localisation des principales chambres, les profils et unités litho-stratigraphiques qui ont été étudiés par la palynologie par Carrión (1992), Carrión et al. (1998), et dans ce papier. La plupart des sédiments de CI, CIII et CIV viennent de l’extérieur via les entrées orientées au nord. Ceux de CV et une bonne partie de CIV sont arrivés par la cheminée de l’extréme sud.
Rodentia (Eliomys, Arvicola, Pitmys, Sylvaemus), Carnivora (Canis, Vulpes, Genetta), Equidae, Suidae, Cervidae, and Bovidae (Ovis, Bos, Capra) (Wigand, 1978).

The relative importance of fluvial, fluvial, and biotic transport as sediment sources at Carihuella has apparently varied during the Pleistocene. The north facing and overhanging situation of the cave opening, and biotic transport may have been present all the time introducing wind-blown silt and clay but nowhere inside the cave uniform sedimentary structures are found that characterize eolian transport (Davis, 1990). Considering the particle features, water transport could have been important in Units XII, XI, VIII, VI, and II–I (Carrión, 1992). Biotic transport is evident in Units VII and VI (Vega-Toscano, 1988; Carrión et al., 1998). On the other hand, cave spall depending on internal weathering of walls and roofs have been a source of sediment in Units X, VII, V, and III, which coincided with stadial stages in the pollen sequence.

Lithic implements of Units XII–V are typical of the Mousterian. In its uppermost part, Unit IV displays a Mousterian-like industry without leptolithic transformation (Middle Palaeolithic s.l.) (Vega-Toscano, 1993). Unit III contains Upper Palaeolithic tools. Units II and I are mainly Neolithic, with Bronze Age materials in the uppermost Unit I. The bulk of the materials retrieved from Chambers IV and V consists of pottery sherds. In addition, there are blades, numerous items of worked bone, stone, bone and shell beads, shell pendants, schist and shell bracelet fragments, flint sickle blades, silver and gold rings, polished blades, grading stones, marble and bone idols, bronze daggers, bones of sheep, goat, cattle and pig, and carbonized grains of wheat and barley (Pellicer, 1964a; Wigand, 1978).

Human remains in Units VIII, VI, V, and lowermost levels of Unit IV are attributable to the Neanderthals; and the Units III–I and uppermost beds of Unit IV to anatomically modern man ("Moderns") (García-Sánchez, 1960; Vega-Toscano, 1988). Neanderthal remains include fragments of parietal and frontal bones of both adults and children. Bone remains from Moderns include cranial and tibial fragments during the Pleistocene and a diversity of individual and collective burials during the Neolithic and Bronze Age levels (Fig. 3). Human osteological remains are in fact, abundant in CIV and CV, but unfortunately in most cases severely fractured (Wigand, 1978).

5. Chronology

Several series of thermoluminescence dates were provided by Fremlin (1974), Göksu et al. (1974), and Vega-Toscano (1988), but lack exact stratigraphical origin, and uniquely refer to the nature of material and industrial typology (Tables 1 and 2). In any case, what remains clear is (i) that they show a time-span of about 70,000 years for materials extracted from Units XI–III, ranging between approximately 82,500 and 11,200 yr BP, and (ii) that considering the Late Palaeolithic tools associated with TB6, TB8b, and TB7, it is likely that the dates in these units represent materials of Units IV and III in Chamber IV.

During the course of investigations by Carrión et al. (1998, 1999) and this work, several samples of sediment from different sections have been submitted for radiocarbon (mainly organic clays) and 230Th/234U (mainly breccias) dating (Tables 3 and 4). The results show that:

- Unit VIIa was formed during the last interglacial stage, which would mark the onset of the pollen sequence;
- the interpleniiglacial episode defined by the deposition of clays during Unit VI started around 45,000 yr BP and ended before 28,500 yr BP, broadly correlating with OIS 3 (ca. 48–26 yr BP), and placing the thermoclastic, xerophyte-dominated Units VIIb and V in episodes of OIS 4 and 2, respectively;
- last Neanderthals of Carihuella lived between ca. 28,440 and 21,430 yr BP, which agrees with the postulation that southern Spain was the last refuge for this human species in Europe. In fact, the pattern of disappearance of Neanderthals across the Iberian Peninsula suggests a strong north to south pattern;
- sediments building CIV Sections 3, 4, and 5, which are placed within Pellicer’s (1964a) excavation area, were deposited between ca. 15,700 and 1250 yr BP (Table 3). Dating of these sediments suggest that Unit III is mainly Lateglacial, and Units II and I are postglacial, as suggested by Vega-Toscano (1988).

6. Pollen-analytical methods

Carrión (1992) studied palynology of Units XII–IV, although the Unit XII and the lowermost levels of XI contained no pollen. Carrión et al. (1998) carried out pollen analysis of two profiles from CIV (1 and 2) comprising Units VI–III (Fig. 2). Here we present pollen analysis of three additional sections from CIV situated in the transition towards CV. These profiles, referred as CIV Sections 3, 4, and 5, embrace Units III–I (Fig. 2). In total, 87 sediment samples were analyzed, including 10 samples for CIV Section 3 samples (87–78), 11 for CIV Section 4 (samples 77–67), and 66 for CIV Section 5 (samples 66–1). Sample 1 was made of superficial bat guano and was not considered for this study. Samples 6, 7, 10, 11, 39, 40, 47, 48, and 60 from CIV Section 5, samples 70–72 from CIV Section 4, and sample 80 from CIV Section 3 lacked pollen.

Samples for pollen analysis were taken according to lithological features at irregular intervals of 4–10 cm. Laboratory treatment was performed following conventional HF, HCl, KOH method and Lycopodium clavatum tablets containing a known quantity of spores were added to each sample prepared to enable a calculation of pollen concentration (Fig. 4). Pollen grains were concentrated by means of the heavy-liquid flotation method outlined by Girard and Renault-Joffre (1974), Go¨ksu et al. (1974), and Vega-Toscano (1993). Unit III contains Upper Palaeolithic tools. Units II and I are mainly Neolithic, with Bronze Age materials in the uppermost Unit I. The bulk of the materials retrieved from Chambers IV and V consists of pottery sherds. In addition, there are blades, numerous items of worked bone, stone, bone and shell beads, shell pendants, schist and shell bracelet fragments, flint sickle blades, silver and gold rings, polished blades, grading stones, marble and bone idols, bronze daggers, bones of sheep, goat, cattle and pig, and carbonized grains of wheat and barley (Pellicer, 1964a; Wigand, 1978).

Human remains in Units VIII, VI, V, and lowermost levels of Unit IV are attributable to the Neanderthals; and the Units III–I and uppermost beds of Unit IV to anatomically modern man ("Moderns") (García-Sánchez, 1960; Vega-Toscano, 1988). Neanderthal remains include fragments of parietal and frontal bones of both adults and children. Bone remains from Moderns include cranial and tibial fragments during the Pleistocene and a diversity of individual and collective burials during the Neolithic and Bronze Age levels (Fig. 3). Human osteological remains are in fact, abundant in CIV and CV, but unfortunately in most cases severely fractured (Wigand, 1978).
4 (middle part), and CIV Section 5 (above) (Figs. 4–6). Local pollen assemblage zones were determined after visual inspection of the variation in the dominant pollen taxa. Sterile samples are represented in the pollen diagrams as breaks in the pollen curves.

A synthetic pollen diagram for the whole sequence of Carihuela is presented in Fig. 7 taking into account the lithostratigraphic correlation of Vega-Toscano et al. (1988), but moving the relative position of VIIa (zone R) down to the basis, according to its 230Th/234U chronology (Table 3). As in the course of past investigations, pollen analysis for some lithostratigraphic units was repeated (Carrió, 1992; Carrió et al., 1998), it was necessary to exclude overlapping spectra in the construction of the synthetic diagram. Thus, although curves in Figs. 4–7 seem to be continuous, one should bear in mind that hiatuses may occur at the section changes and at several other stages of the sequence. In order to avoid confusion with Carrion’s (1992) zone R (Unit VIIa), we here propose a new nomenclature for the pollen zones (Figs. 4–7).

7. Results: completing the pollen record

7.1. General features of the new sequences

The main pollen contributors to the pollen sequences of CIV Sections 3, 4, and 5 are Quercus, Poaceae, Asteraceae, and to a lesser extent, Pinus, Juniperus, Artemisia, Lamiaceae, Helianthemum, and Pteridophyta. In comparison with the
Table 1
Thermoluminescence dating for Carihuela CIII Section 1 (Units XI–III) which became available after the excavations by H.T. Irwin and R. Fryxell of Washington State University (Vega-Toscano, 1988)

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>TL estimated (yr BP)</th>
<th>Suggested lithostratigraphy</th>
<th>Suggested palynozone</th>
</tr>
</thead>
<tbody>
<tr>
<td>B48</td>
<td>13,400 ± 600</td>
<td>III</td>
<td>18</td>
</tr>
<tr>
<td>B52</td>
<td>19,300 ± 500</td>
<td>IV</td>
<td>16–17</td>
</tr>
<tr>
<td>B6</td>
<td>20,200 ± 1200</td>
<td>IV</td>
<td>16</td>
</tr>
<tr>
<td>B47</td>
<td>20,950 ± 1200</td>
<td>IV</td>
<td>16</td>
</tr>
<tr>
<td>B43</td>
<td>21,100 ± 1300</td>
<td>V–IV</td>
<td>16</td>
</tr>
<tr>
<td>B44</td>
<td>37,350 ± 2200</td>
<td>VI–(V)</td>
<td>11–13</td>
</tr>
<tr>
<td>B54</td>
<td>42,400 ± 1500</td>
<td>VI</td>
<td>11</td>
</tr>
<tr>
<td>B49</td>
<td>49,200 ± 2500</td>
<td>VI</td>
<td>10</td>
</tr>
<tr>
<td>B53</td>
<td>68,000 ± 1800</td>
<td>X–VIII</td>
<td>6–8</td>
</tr>
<tr>
<td>B46</td>
<td>82,500 ± 4900</td>
<td>XI</td>
<td>2–5</td>
</tr>
</tbody>
</table>

Published in Carrión et al. (1998).

Table 2
Thermoluminescence dating for Carihuela CIII and CIV chambers (Units XI–III) in accordance with determinations by Göksu et al. (1974) and subsequent modifications by Göksu and K. Sammers in Davidson (1989)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TB7</td>
<td>12,000–14,000</td>
<td>13,600 ± 800</td>
<td>11,200</td>
<td>Late Palaeolithic</td>
<td>III in CIII 2</td>
<td>18</td>
</tr>
<tr>
<td>TB6</td>
<td>20,000 ± 3000</td>
<td>20,200 ± 3000</td>
<td>17,000</td>
<td>Late Palaeolithic</td>
<td>IV–III in CIV</td>
<td>16–18</td>
</tr>
<tr>
<td>TB8b</td>
<td>20,000–21,000</td>
<td>27,000 ± 1000</td>
<td>23,000</td>
<td>Late Palaeolithic</td>
<td>V–IV in CIV</td>
<td>15</td>
</tr>
<tr>
<td>TB12</td>
<td>39,000</td>
<td>27,400 ± 1000</td>
<td>25,700</td>
<td>Mousterian</td>
<td>V in CIII</td>
<td>14–15</td>
</tr>
<tr>
<td>TB2</td>
<td>28,000</td>
<td>28,000 ± 1000</td>
<td>27,300</td>
<td>Mousterian</td>
<td>V in CIII</td>
<td>14–15</td>
</tr>
<tr>
<td>TB5</td>
<td>31,000–35,000</td>
<td>33,000 ± 1200</td>
<td>25,200</td>
<td>Mousterian</td>
<td>V in CIII</td>
<td>14–15</td>
</tr>
<tr>
<td>TB1</td>
<td>32,000</td>
<td>39,400 ± 2000</td>
<td>34,000</td>
<td>Mousterian</td>
<td>VI–V in CIV</td>
<td>14–15</td>
</tr>
<tr>
<td>TB3</td>
<td>46,000</td>
<td>57,700 ± 2500</td>
<td>45,200</td>
<td>Mousterian</td>
<td>VI in CIII</td>
<td>10</td>
</tr>
<tr>
<td>TB9a</td>
<td>48,000</td>
<td>58,800 ± 2500</td>
<td>47,800</td>
<td>Mousterian</td>
<td>VI in CIII</td>
<td>9–10</td>
</tr>
<tr>
<td>TB8a</td>
<td>80,000</td>
<td>–</td>
<td>--</td>
<td>Mousterian</td>
<td>XI in CIII</td>
<td>2–5</td>
</tr>
</tbody>
</table>

Suggested litho- and palynostratigraphy rely on the archaeological findings in combination with data in Fig. 7.
La litho- et la palynostratigraphie suggérées sont en relation avec les résultats archéologiques, présentés à la Fig. 7 avec toutes les données.

Table 3
Radiocarbon dating for CIII, CIII AE, and CIV, and Th/U dating for CIII. See archaeological, palaeoanthropological, litho- and palynostratigraphical contexts

<table>
<thead>
<tr>
<th>Laboratory no.</th>
<th>Sample material/ method</th>
<th>Years BP</th>
<th>Chamber/ Section</th>
<th>Unit</th>
<th>Carrión et al.’s (1998) zone</th>
<th>Pollen zone (this paper)</th>
<th>Archaeology/Human remains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-141048</td>
<td>Organic/¹⁴C</td>
<td>1250 ± 60</td>
<td>CIV 5</td>
<td>I–1</td>
<td>–</td>
<td>22</td>
<td>H. sapiens</td>
</tr>
<tr>
<td>Beta-141049</td>
<td>Organic/¹⁴C</td>
<td>5470 ± 90</td>
<td>CIV 5</td>
<td>I–1</td>
<td>–</td>
<td>21/22</td>
<td>Neolithic/H. sapiens</td>
</tr>
<tr>
<td>Pu-9162</td>
<td>Organic/¹⁴C</td>
<td>5690 ± 30</td>
<td>CIV 5</td>
<td>I–5</td>
<td>–</td>
<td>21</td>
<td>Neolithic/H. sapiens</td>
</tr>
<tr>
<td>Pu-9163</td>
<td>Organic/¹⁴C</td>
<td>6260 ± 20</td>
<td>CIV 5</td>
<td>II–2</td>
<td>–</td>
<td>21</td>
<td>Neolithic/H. sapiens</td>
</tr>
<tr>
<td>Beta-141050</td>
<td>Organic/¹⁴C</td>
<td>6910 ± 70</td>
<td>CIV 4</td>
<td>II–4</td>
<td>–</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>Pu-9166</td>
<td>Organic/¹⁴C</td>
<td>7700 ± 90</td>
<td>CIV 4</td>
<td>II–5</td>
<td>–</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>Pu-9165</td>
<td>Organic/¹⁴C</td>
<td>8130 ± 100</td>
<td>CIV 3</td>
<td>II–6</td>
<td>19</td>
<td>–</td>
<td>Late Palaeolithic/H. sapiens</td>
</tr>
<tr>
<td>Beta-74380</td>
<td>Organic/AMS</td>
<td>12,320 ± 60</td>
<td>CIV 2</td>
<td>III</td>
<td>CIV 2-d</td>
<td>–</td>
<td>Neolithic/H. sapiens</td>
</tr>
<tr>
<td>Pu-7892</td>
<td>Organic/¹⁴C</td>
<td>15,700 ± 220</td>
<td>CIV 3</td>
<td>III</td>
<td>–</td>
<td>18</td>
<td>Upper Palaeolithic/H. sapiens</td>
</tr>
<tr>
<td>Pu-8745</td>
<td>Organic/¹⁴C</td>
<td>21,430 ± 130</td>
<td>CIII 1</td>
<td>Uppermost V</td>
<td>M</td>
<td>15</td>
<td>Mousterian/Neanderthal</td>
</tr>
<tr>
<td>Pu-8746</td>
<td>Organic/¹⁴C</td>
<td>25,850 ± 180</td>
<td>CIII 1</td>
<td>Intermediate V</td>
<td>M</td>
<td>14</td>
<td>Mousterian/Neanderthal</td>
</tr>
<tr>
<td>Pu-8733</td>
<td>Organic/¹⁴C</td>
<td>28,440 ± 240</td>
<td>CIII 1</td>
<td>Basal V</td>
<td>N</td>
<td>13</td>
<td>Mousterian/Neanderthal</td>
</tr>
<tr>
<td>Beta-74381</td>
<td>Organic/AMS</td>
<td>45,200 ± 1270</td>
<td>CIII AE 1</td>
<td>Basal VI</td>
<td>Q</td>
<td>10</td>
<td>Mousterian/Neanderthal</td>
</tr>
<tr>
<td>UAB</td>
<td>Breccia/²³⁰Th/²³⁴U</td>
<td>117,000 ± 41,000</td>
<td>CIII AE 3</td>
<td>VIIa</td>
<td>R</td>
<td>1</td>
<td>–</td>
</tr>
</tbody>
</table>

Published in Carrión et al. (1998).
pollen sequences of the sections studied up to now in CIII (Carrión, 1992) and CIV (Carrión et al., 1998), Quercus reaches considerably higher values while Pinus, Artemisia, and Ephedra are generally lower. Some minor types appear for the first time such as the indicators of agriculture Vitis, Polygonum aviculare type and Cerealia.

7.2. Pollen stratigraphy

The new pollen records comprise pollen zones 18–22 (Figs. 4–6). Zone 18 includes pollen spectra 87 to 83 from CIV Section 3. Maxima for juniper pollen (ca. 6%) are recorded, as well as low percentages of Pinus (below 4%), while deciduous

![Fig. 4. Concentration pollen diagram of selected taxa for CIV Sections 3–5.](image)
Quercus shows an increase from 8 to 16% and evergreen Quercus from 3 to 9%. In contrast, Poaceae pollen decreases from its high amounts at the base (52%). Artemisia pollen is relatively high (10%), although yet declining towards the end of the zone. Continuous occurrences of Corylus, Fraxinus, Ulmus, Betula, Rhamnus, Pistacia, Phillyrea, Cistus, Salix, Ephedra fragilis, Olea, Ononis, and Hedera are recorded. Lamiaceae is especially prominent (9–4%) among NAP (non-arboreal pollen).

Zone 19 includes pollen spectra 82 to 78 from CIV Section 3. A progressive increase of Quercus pollen (32% for deciduous type and 17% for evergreen) is shown, while Poaceae and Artemisia continue with decreasing trends. Pine pollen representation is low, not exceeding 4%. Corylus, Betula, Juglans, Fraxinus, and Salix occur among the AP (arboreal pollen). Relatively large values of Asphodelus (7%) and Lamiaceae (6%), and a diversity of herbs are indicative of heliophytic vegetation within a generally open forested landscape. Forests are dominated by oak species with a good variety of other trees and a diverse woody understory of Pistacia, Phillyrea, Rhamnus, Olea, Cistus, and Viburnum.

Zone 20 (ca. 7700–6910 yr BP) includes pollen spectra 77 to 67 from CIV Section 4. Quercus pollen is predominant, with a maximum value of 36% for the deciduous type, and 23% for the evergreen type. Poaceae is generally less abundant than in the preceding zones accounting around 13–6%. Artemisia, Juniperus, and Pinus continue to be secondary pollen contributors to this pollen zone. AP includes Castanea (1.3%), Juglans (0.6%), Ulmus, Corylus, Betula, and Alnus, among others, but never surpassing 0.4%. Ericaceae, Rhamnus, Pistacia, Cistus, Olea (2.9%), and Phillyrea do not show visible changes respecting the former zone. Genisteae shows a peak (3.8%) in this zone. Ephedra distachya type disappears from the pollen record, while Ephedra fragilis appears eventually. Several NAP types are relatively prominent, like Helianthemum (7%), Apiaceae (3.5%), Asphodelus (3.7%), Geraniaceae (3%), Plantago (1.9%), and Pteridophyta (2.9%). Other types decrease in relation to the former zone, such as Lamiaceae (3–0.7%), Chenopodiaceae (2.5–0.7%), Caryophyllaceae (4–0.7%), Brassicaceae (1.5–0.3%), and Rubiaceae (1.7–0.7%).

Zone 21 (ca. 6260–5470 yr BP) refers to the samples 66–13 from CIV Section 5. Palynological features are very much like those of the former zone 20. We establish two zones instead of a single zone because there is a hiatus in the section between ca. 6910 and 6260 yr BP that belong to different sections from the
CIV excavation grid (Fig. 2). Deciduous *Quercus* are again predominant with peaks of 43%, 42% and 39%. This type oscillates throughout the zone, in the same way as the evergreen *Quercus* type, with maxima values around 28–30% and minima of 14–15%. Poaceae also shows fluctuations, but generally increase to a percentage of 48% in sample 22. Poaceae maxima coincide with *Quercus* lows in most of the zone. It is worth mentioning the abundance of Asteraceae pollen after c. 5690 BP, with values consistently above 30%. This uppermost part of zone 21 is also where Poaceae shows its highest frequencies. This change involves a reduction of the fern spores component. Characteristically, these variations in Asteraceae, Poaceae, and Pteridophyta are visible in the concentration curves (Fig. 4).

Zone 22 (ca. 5470–1250 yr BP) includes pollen spectra 12–2 from CIV Section 5. A first particularity of this zone is the increase of *Pinus* and *Juniperus* up to 10% and 3.8% respectively, accompanied by a marked decrease in deciduous oak pollen (4–7%), and to a smaller extent in evergreen oak pollen (8–17%). Poaceae shows persistently high percentages of about 30–33%. *Artemisia* increases slightly (6%). *Corylus*, *Betula*, *Buxus*, and *Myrtus* disappear from the pollen record, while *Juglans* (0.8%), *Genisteae* (3%), *Chenopodiaceae* (3%), and *Olea* (3%) increase. This zone is also characterized by the exclusive occurrence of *Vitis* (0.4%), *Cerealia* (1.7%), *Polygonum aviculare* type (0.4%), and maximum values of *Plantago* around 3–4%.

Unfortunately, a precise attribution of Pellicer’s (1964a, 1964b) archaeological materials (Neolithic and Bronze Ages) to the described pollen stratigraphy is not feasible since this author hardly gave sedimentological descriptions of the archaeological beds, and, indeed, his published profile for CIV in Pellicer (1964a) is quite different to the drawing by Vega-Toscano et al. (1996) and the section observed by us during the pollen sampling in 1999. It is, however, clear from these publications and the chronology presented here that the zones 19–22 are dominated by Neolithic materials, with Bronze Age materials mixed in the superficial zone 22.

7.3. Taphonomical considerations

It is worth mentioning that several peaks of indeterminable pollen coincide with decreases in the number of pollen taxa, and eventually with relatively high values of Asteraceae pollen, for instance in the uppermost zone 21 (Fig. 4). At first, this could suggest differential preservation. However, considering the whole sequence, a scenario of selective preservation and sediment decomposition seems unlikely. Firstly, we see that several peaks of indeterminable pollen sometimes coincide with high pollen concentrations even in the context of high sedimentation rates. Secondly, because between 5470 and 1250 yr BP, pollen concentration decreases together with declines of indeterminable and Asteraceae pollen, and
increases of pollen taxon diversity. Thirdly, there are generally similar fluctuations in the curves of pollen concentration (Fig. 4) and pollen percentages (Figs. 5 and 6), suggesting that the events to be described are real, rather than statistical artefacts. Fourthly, because, it is apparent that the declines in concentration are not universally related to increased values of indeterminable and/or Asteraceae types (Fig. 6). Finally, the relationships between these indicators of reliability are very complex, and may vary from layer to layer (Carrión et al., 1999; Navarro et al., 2000; Carrión, 2002b). Post-depositional processes associated with cave pollen spectra are poorly known, but to-date experimental work suggests a great deal of stochastic tendencies (Burney and Burney, 1993; Navarro et al., 2001).

The studied sequences show acceptable pollen taxa diversity. A total of 52 pollen types have been recognized. For the whole sequence, 87 pollen types have been identified. Differently to CIV Sections 1 and 2 (Carrión et al., 1998), there are no palynological indicators (e.g. algal spores) of water transport in these pollen diagrams, although episodically this means of transport cannot be excluded for sedimentation or erosion in some parts of the cave.

8. Discussion

8.1. Lateglacial and Holocene palaeoenvironments

The new pollen record starts at ca. 15,700 yr BP depicting the onset of the Late Glacial, which has been dated in Padul at ca. 15,200 yr BP (Pons and Reille, 1988). A grass-dominated open landscape can be inferred from the pollen spectra of zone 18, although there is a noticeable diversity of trees and shrubs, including mainly oaks, both deciduous and evergreen, and mesothermophilous components (e.g. *Olea*, *Corylus*, *Fraxinus*). It is reasonable to infer the existence of juniper-dominated parklands in the regional plateaux (Carrión et al., 2004).

The Lateglacial sequence of CIV Section 2 was also characterized by a pollen curve of *Juniperus*, with the presence of *Betula*, and indicators of climate improvement such as
evergreen and deciduous Quercus, Fraxinus, Acer, Corylus, Salix, Rhamnus, Cistus, Viburnum, Olea europaea, and Myrtus communis, which occur for the first time (Carrion et al., 1998). There is no signal for the Younger Dryas cold event in zone 18, probably because the Late Glacial CIV Section 3 contains hiatuses. A pollen signal for this climatic phase was, however, visible in CIV Section 2 (Carrion et al., 1998).

These Lateglacial pollen spectra allow us to place the coprolite (Crocuta crocuta) pollen record of Las Ventanas in the Younger Dryas. This was anticipated in Carrion et al. (2001c) on the basis of a coprolite date of ca. 10.670 yr BP. A mosaic landscape was inferred comprising grasslands, steppe of Artemisia with junipers, pine forests, and patches of oak forests with other temperate and Mediterranean trees and shrubs like Betula, Abies, Corylus, Alnus, Acer, Taxus, Myrtus, Olea, Pistacia, Ephedra fragilis, and Rhamnus.

The following stage, pollen zone 19, involves a regression of the juniper formations, a feature that marks the beginning of the Holocene in many regions of Iberia (Peñalba et al., 1997; Carrion, 2002a). Pollen zones 20 (7700–6910 yr BP) and 21 (6260–5470 yr BP) indicate a clearly arboreal early to mid-Holocene palaeo-vegetation, characterized by the dominance of broad-leaf species within a mixed oak forest ecosystem with diversity of trees and understorey.

The most recent phase of the sequence, zone 22 (ca. 5470–1250 yr BP), represents a mid- to late-Holocene mesophyte depletion with local extinction of several broad-leaf species, and opening of the landscape. Yet, oaks dominated the landscape. Xerophytes and indicators of agriculture and expansion of grazing in the region are recorded together with more pines and junipers. The arboreal cover also experiences a reduction.

8.2. The whole sequence

After these results, the main features of the Carihuela palaeoenvironmental record are: (i) a last Interglacial Olea/Quercus-dominated stage (zone 1) with a diversity of other trees and shrubs, (ii) an interval (zones 2–5), perhaps equivalent to the Pre-Würm of Padul (Pons and Reille, 1988), with alternation of Artemisia and forest taxa that included oaks and pines, (iii) several full-glacial maxima (mainly in zones 9 and 13–15) with forest depletion, dominance of Artemisia, Poaceae, Chenopodiaceae, and Ephedra distachya type, and sedimentological and paleontological indicators of climatic shifts to increased dryness, (iv) an inter-Pleni-glacial episode (zones 10–12) with pine forest developments, (v) a Late Glacial stage (zone 18) with oak colonisation, and (vi) a Holocene phase (zones 19–22) featured by mixed oak forests with decreasing diversity of broad-leaf trees and increasing xerophytes and anthropophytes across the transition from mid to late Holocene (Fig. 8).

It cannot be stressed enough that, in order to compare lithological and palaeobiological evidence in Carihuela, the best criteria are the nature and composition of the pollen assemblages rather than the pollen percentages or concentrations (Fig. 8). Thus, as shown by Carrion et al. (1998), the number of mesothermophilous taxa conforms better with lithological and faunal events than the vegetation types. For instance, thermoclastic scree was particularly abundant in Units VIIb and V, where fossil rodents such as Microtus arvalis that indicate cold conditions, are noticed and where pollen spectra argue for steppe-like vegetation without thermophilous elements. In contrast, the occurrence of carbonate concretions is apparent in the basal breccia and Units XI, VI, IV–III, and II–I where pollen spectra contain thermophilous taxa.

Ever since the pioneering work on Carihuela (Carrion, 1990), the assessment of cave palynology has changed on the basis of some experimental results on aerial pollen deposition (Burney and Burney, 1993; Coles and Gilbertson, 1994; Hunt and Rushworth, 2005), surface sedimentation (Navarro et al., 2000, 2001), speleothem development (McGarry and Caseldine, 2004), and faecal accumulation of a diversity of animals (Carrion, 2002b; Pearson and Betancourt, 2002). In the context of these investigations, it seems that Carihuela Cave is well orientated as a site for pollen analysis, because of (i) the occurrence of three large entrances favouring pollen input through air circulation, (ii) the occurrence of sedimentary strata covering the full-glacial stages, which are usually represented as gaps in cave infillings and as palynologically sterile loess in peaty basins (Carrion and van Geel, 1999), (iii) excavations opened several profiles where lateral comparison of pollen spectra can be performed, (iv) good pollen preservation and substantial pollen concentration, and (v) the possibility of correlation with cultural phases. On the other hand, the reliability of the pollen assemblages is supported by the existence of equivalent rises and falls in the curves of pollen concentrations and percentages, and relatively low frequencies of indeterminable palynomorphs (Figs. 4–7).

In addition, the Carihuela pollen record fits into the general trends described for pollen records of reference sites of the Mediterranean Basin (Tzedakis et al., 1997; Jalut et al., 2000; Gonzalez-Samperez, 2004; Roberts et al., 2004; Willis and van Andel, 2004). In this sense, the most pertinent case is Padul (Pons and Reille, 1988), a pollen site situated to the south in the Granada province, within a slightly warmer and less continental climate. Like Carihuela, the Padul pollen record includes Eemian and Holocene phases characterized by forested landscapes of oaks and thermophytes, while the main woods during the Pleistocene stages are pines and junipers, which alternate with herbaceous types, eventually Artemisia and Poaceae as main pollen contributors during full-glacial peaks (Fig. 3). Both sequences can be compared as follows:

- the interglacial Padul 2 zones a–j (“Pre-Würm” in Pons and Reille, 1988) as equivalent to Carihuela zones 1–5, although Olea and Artemisia are comparatively more important in Carihuela. It remains a possibility that the Padul 2 zones a–j are equivalent to Carihuela zone 1;
- the full-glacial Padul 3 zones a–f (29,300–15,200 yr BP) as equivalent to Carihuela zones 14–17 (28,480–15,700 yr BP);
- the Late Glacial Padul 3 zones g–l (15,200–10,000 yr BP) as equivalent to Carihuela zone 18 (15,700);
- the postglacial Padul 3 zones m–t (before 8200–4450 yr BP) as roughly equivalent to Carihuela zones 19–21 (10,000–5470 yr BP).
A more detailed correlation is not feasible because there must be some differences related with pollen taphonomy and local physiography, and both sequences lack acceptable chronological control for the early Upper Pleistocene zones.

The early oak colonisation in Carihuela and Padul during the Late Glacial suggests the proximity of glacial refugia for evergreen and deciduous *Quercus* together with other trees and shrubs. The Siles pollen record (Carrióñ, 2002a) is especially relevant to demonstrate the continuous presence of arboreal populations in the Betic mountain ranges during full-glacial episodes. Tree survival would have been especially important in mountain ranges like Sierra Nevada and Sierras Mágin, Arana, Segura and Cazorla. The sharp orography of these massifs would have allowed rapid altitudinal displacements of tree populations in response to climatic pulses. Other data suggesting that these cordilleras included important tree reservoirs during the last glacial stage can be found in the present genetic structure of European tree populations (Arroyo-García et al., 2001; Olalde et al., 2002; Burban and Petit, 2003; Jiménez et al., 2004), and pollen sequences from caves and rockshelters (Dupré, 1988; Carrióñ et al., 1995; Carrióñ et al., 2003a).

Nevertheless, on the basis of the similarities between Carihuela and Padul, neither of these sites should be considered representative of any general trend of Late Glacial and Holocene forest succession for southern Iberia. The available pollen records offer a picture of great spatial heterogeneity, and do not show persistent trends through time. Firstly, oak invasion may not take place during the Late Glacial, or even the early Holocene, but may rather be delayed until the mid-Holocene, such as in Navarrés, Valencia (Carrióñ and Dupré, 1996; Carrióñ and van Geel, 1999), Villaverde, Albacete (Carrióñ et al., 2001a), and Ga´dor (Carrióñ et al., 2003b) and San Rafael, Almerı´a (Pantaleo´n-Cano et al., 2003). Secondly, pine forests may dominate the whole Holocene series such as in many sites of central Spain (Garcı´a-Anto´n et al., 1986; Franco et al., 2001), Iberian System (Peñalba, 1994; Stevenson, 2000), Valle del Ebro (Stevenson et al., 1991; González-Sampérez, 2004), and the semi-arid southeastern region (Yll et al., 2003). A third scenario is that *Quercus* and *Pinus* remain co-dominant during most of the Holocene, like in Elx and Salines, Alicante (Burjachs et al., 1997), and Torreblanca, Castello´n (Pe´rez-Obiol et al., 1994). This diversity of vegetational developments involves the occurrence of episodic and abrupt vegetation changes (Carrióñ et al., 2001b) in contrast to cases of millennial-scale complacency to continental-scale climate change (Carrióñ, 2001). It therefore appears that a particular
state of the vegetation is at least partially, influenced by its biotic history rather than merely by the abiotic site properties.

It is perhaps meaningful that this heterogeneity of environmental change increases from mid to late Holocene in Mediterranean Spain (Dupré and Renault-Miskovsky, 1990; Badal et al., 1994), which strongly suggests that human activities have been of paramount importance to shape current landscapes. Palynological indicators of anthropogenic disturbance are clear in sites of Levante and western Andalusia since the Neolithic (Stevenson and Harrison, 1992; Carrióñ and van Geel, 1999) while the ecological structure of the landscape is not seriously affected by man until the Argaric period in montane Almería and Murcia (Carrióñ et al., 2003b), and remains affected by uniquely pastoralism until historical times in high-elevation mountain areas of the Betics (Carrióñ, 2002a).

The case with Carihuela is not clear-cut since sediments of the anthropogenic pollen zone 22 are relatively disturbed and the industry for this zone is represented by a mixture of Neolithic and post-Neolithic materials. The faunal record and seed remains in CIV and CV suggests agriculture and animal domestication ever since the Neolithic and especially since the Chalcolithic and Argaric periods (Wigand, 1978), and the domestication is clear in sites of Levante and western Andalusia since the Neolithic (Stevenson and Harrison, 1992; Carrióñ and van Geel, 1999) while the ecological structure of the landscape is not seriously affected by man until the Argaric period in montane Almería and Murcia (Carrióñ et al., 2003b), and remains affected by uniquely pastoralism until historical times in high-elevation mountain areas of the Betics (Carrióñ, 2002a).

The case with Carihuela is not clear-cut since sediments of the anthropogenic pollen zone 22 are relatively disturbed and the industry for this zone is represented by a mixture of Neolithic and post-Neolithic materials. The faunal record and seed remains in CIV and CV suggests agriculture and animal domestication ever since the Neolithic and especially since the Chalcolithic and Argaric periods (Wigand, 1978), and the abundance of post-Neolithic settlements around Iznalloz, Huelago, Campotéjar, Sierra Arana, Río Fardes, and Laborcillas (Pellicer, 1964a, 1964b; Wigand, 1978; Nocete, 2001) supports the idea that human impact upon the landscapes may have been relatively intense in the lowlands ever since ca. 4500 yr BP. Archaeological literature tends to suggest enhanced intensity of human impacts in the region from the Chalcolithic period to the Bronze Age, including the occurrence of lowland and midland forest destruction and matorralization (Chapman, 1991). Palaeoanthropological and carpological evidence has been indicated to testify to wider clearance, increased exploitation of woody species, and advanced pasturage (Rodríguez-Ariza, 1995; Buxó, 1997), while pollen analyses in open-site excavation beds from river valleys show increased heliophytes, sparser pines, and anthropogenic indicators (Cerealía, Plantago, Polygonum, Vitis) (López-García, 1988; Davis and Mariscal, 1994). However, in view of detailed environmental inference, we think that this basis of evidence including site-specific palynology is probably not the type of data that could provide reliable answers. The problem appears where the spatial scale reaches crucial importance and, therefore, the magnitude of human interference on the eastern Andalusian landscape might be only adequately approached on the basis of specifically-designed projects.

Yet, the pollen sequence presented here can be supported by the Padul one to demonstrate that, unlike other regions of eastern and central Spain, oak forests are very old in eastern Andalusia. The bone of contention with floristic phytosociological models of vegetation change (e.g. Rivas-Martínez, 1987; Peinado et al., 1992) could come from the fact that, both in Padul and Carihuela, deciduous oaks are very abundant, if not eventually dominant, since the Late Glacial. Thus, the most parsimonious picture of Holocene pre-anthropic vegetation is one dominated by mixed oak forests with important contribution of pines instead of monospecific Q. ilex/rotundifolia woodlands, as assumed by neontologists.

Acknowledgements

We thank constructive comments by S.D. Muller, Louis Scott, and an anonymous referee on an earlier draft of the manuscript. This investigation has been funded by the projects PI-17/00739/FS/01 and PI-00369/FS/04 (Fundación Séneca, Murcia), and REN2003-02499-GLO (Ministerio de Ciencia y Tecnología, Madrid).

References

Almagro, M., Fryxell, R., Irwin, H.T., Serna, M., 1970. Avance a la investiga-

rearcheología, geocronológica y ecológica de la Cueva de la Cariguella de Piñar (Granada). Trabajos de Prehistoria 27, 45–60.

Arroyo-García, R., Martínez-Zapater, J.M., Fernandez Prieto, J.A., Álvarez-

Badal, E., Bernabeu, J., Vernet, J.L., 1994. Vegetation changes and human action from the Neolithic to the Bronze Age (7000–4000 BP) in Alicante, Spain, based on charcoal analysis. Vegetation History and Archaeobotany 3, 15–166.

Carrióñ, J.S., 2002a. Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews 21, 2047–2066.

Carrióñ, J.S., Dupré, M., Fumanal, M.P., Montes, R., 1995. A palaeoenviron-

Carrióñ, J., van Geel, B., 1999. Fine-resolution Upper Weichselian and Holo-

cene palynological record from Navarrés (Valencia, Spain) and a discussion about factors of Mediterranean forest succession. Review of Palaeobotany and Palynology 106, 209–236.

